A ug 2 00 6 New lower bounds for the number of ( ≤ k ) - edges and the rectilinear crossing number of K n ∗

نویسندگان

  • Oswin Aichholzer
  • David Orden
  • Pedro Ramos
چکیده

We provide a new lower bound on the number of (≤ k)-edges of a set of n points in the plane in general position. We show that for 0 ≤ k ≤ ⌊ 2 ⌋ the number of (≤ k)-edges is at least Ek(S) ≥ 3 (

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 4 A ug 2 00 6 New lower bounds for the number of ( ≤ k ) - edges and the rectilinear crossing number of K n ∗

We provide a new lower bound on the number of (≤ k)-edges of a set of n points in the plane in general position. We show that for 0 ≤ k ≤ ⌊ 2 ⌋ the number of (≤ k)-edges is at least Ek(S) ≥ 3 (

متن کامل

Lower bounds on the signed (total) $k$-domination number

Let $G$ be a graph with vertex set $V(G)$. For any integer $kge 1$, a signed (total) $k$-dominating functionis a function $f: V(G) rightarrow { -1, 1}$ satisfying $sum_{xin N[v]}f(x)ge k$ ($sum_{xin N(v)}f(x)ge k$)for every $vin V(G)$, where $N(v)$ is the neighborhood of $v$ and $N[v]=N(v)cup{v}$. The minimum of the values$sum_{vin V(G)}f(v)$, taken over all signed (total) $k$-dominating functi...

متن کامل

New Lower Bounds for the Number of (<=k)-Edges and the Rectilinear Crossing Number of Kn

We provide a new lower bound on the number of (≤ k)-edges of a set of n points in the plane in general position. We show that for 0 ≤ k ≤ bn−2 2 c the number of (≤ k)-edges is at least Ek(S) ≥ 3 ( k + 2 2 ) + k ∑ j=b3 c (3j − n + 3), which, for b3 c ≤ k ≤ 0.4864n, improves the previous best lower bound in [11]. As a main consequence, we obtain a new lower bound on the rectilinear crossing numbe...

متن کامل

On the signed Roman edge k-domination in graphs

Let $kgeq 1$ be an integer, and $G=(V,E)$ be a finite and simplegraph. The closed neighborhood $N_G[e]$ of an edge $e$ in a graph$G$ is the set consisting of $e$ and all edges having a commonend-vertex with $e$. A signed Roman edge $k$-dominating function(SREkDF) on a graph $G$ is a function $f:E rightarrow{-1,1,2}$ satisfying the conditions that (i) for every edge $e$of $G$, $sum _{xin N[e]} f...

متن کامل

The lower bound for the number of 1-factors in generalized Petersen graphs

‎In this paper‎, ‎we investigate the number of 1-factors of a‎ ‎generalized Petersen graph $P(N,k)$ and get a lower bound for the‎ ‎number of 1-factors of $P(N,k)$ as $k$ is odd‎, ‎which shows that the‎ ‎number of 1-factors of $P(N,k)$ is exponential in this case and‎ ‎confirms a conjecture due to Lovász and Plummer (Ann‎. ‎New York Acad‎. ‎Sci‎. ‎576(2006)‎, ‎no‎. ‎1‎, ‎389-398).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014